

NEFTool: System Design

Benjamin Morrall

Command, Control, Communications and Intelligence Division
Defence Science and Technology Organisation

DSTO-TN-0789

ABSTRACT

The text processing team from the Intelligence Analysis discipline has experimented with the
viability of using machine-learning models to automatically tag English words with syntax and
functional labels within a text document. The NEFTool was developed to assist with testing
different machine-learning models. The system has a modular architecture, and was designed to
be extensible, allowing support for rapid prototyping and for new functionality to be added as
required to support research in text processing.

RELEASE LIMITATION

Approved for public release

Published by

Command, Control, Communications and Intelligence Division
DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: (08) 8259 5555
Fax: (08) 8259 6567

© Commonwealth of Australia 2007
AR- 014-048

November 2007

APPROVED FOR PUBLIC RELEASE

NEFTool: System Design

Executive Summary

One of the many aspects of Information Extraction (IE) involves finding references to
named items of interest (mentions) in a text document. The text processing team in the
Intelligence Analysis Discipline is experimenting with the viability of using machine-
learning models to discover mentions within a text document with minimal human
interaction with the system. The NEFTool was developed to provide a test environment to
facilitate this research, and to support other text processing applications.

The NEFTool has a modular architecture with the separation of data, process and display
as a major design goal. As a result it is possible to modify the various components or even
add new components to the NEFTool without affecting existing functionality.

This report is aimed at readers interested in gaining an insight into the component-based
architecture of the NEFTool. It provides an outline of the fundamental framework of the
NEFTool, and describes an implementation of the system used to find references to
mentions within a document. The report focuses on the framework and implementation
aspects of the system. Details of the IE process are not addressed.

Contents

1. INTRODUCTION ... 1

2. CORE SYSTEM .. 3
2.1 Core Layer (dsto.nef.core).. 4

2.1.1 CoreEnvironment .. 4
2.2 Document Package (dsto.nef.core.document) ... 5

2.2.1 NEFDocument.. 5
2.2.1.1 getContent(Class<T extends NEFContent> contentClass): T 5
2.2.2 NEFContent.. 6
2.2.3 NEFPrimative... 6

2.3 Process Package (dsto.nef.core.process).. 6
2.3.1 NEFProcess... 7
2.3.2 ProcessFailedException .. 7

2.4 Server Processing Package (dsto.nef.core.serverprocessing) 8
2.4.1 NEFServer... 9
2.4.2 NEFSession... 10
2.4.3 ServerSession.. 11

2.5 Event Package (dsto.nef.core.event) .. 11
2.5.1 DocumentChangedListener ... 12
2.5.1.1 Possible use as a MDI system .. 12
2.5.1.2 documentChanged method ... 13
2.5.1.3 clearDocument method .. 14
2.5.2 DestructionListener ... 14
2.5.3 LoadingStateListener .. 15
2.5.4 EventController.. 16

2.6 SwingUI Package (dsto.nef.core.swingui) ... 16
2.6.1 WindowTemplate .. 17
2.6.2 WindowTemplateFactory... 17
2.6.3 NEFWindowSystem.. 17
2.6.4 SDIWindowSystem ... 18
2.6.4.1 Opening a NEFSession in a new NEFWindow 19
2.6.4.2 SDIEventController ... 19
2.6.4.3 WindowCloser Internal Class .. 20
2.6.5 NEFWindow... 20

3. TOKEN SYSTEM... 22
3.1 TokenEnvironment... 22
3.2 Document Package (dsto.nef.entity.document) .. 22

3.2.1 TokenContent... 22
3.2.2 NEFSentence .. 23
3.2.3 NEFToken... 23

3.3 Process Package (dsto.nef.token.process)... 24
3.3.1 TextCleanerProcess ... 24

3.3.2 SentenceBreakerProcess.. 24
3.3.3 PTBTokenizerProcess.. 24

3.4 SwingUI Package (dsto.nef.token.swingui)... 25
3.4.1 JTokenTable.. 25

4. ENTITY SYSTEM .. 26
4.1 Entity Environment (dsto.nef.entity) .. 26

4.1.1 EntityEnvironment.. 27
4.1.2 DictionaryLoader... 27
4.1.3 ThemeLoader ... 27

4.2 Document Package (dsto.nef.entity.document) .. 28
4.2.1 EntityContent ... 28
4.2.2 NEFEntity ... 29
4.2.3 NEFTheme.. 29

4.3 Process Package – Server (dsto.nef.entity.process)... 30
4.3.1 AbstractCRFProcess .. 31
4.3.2 MaxEntPosTaggerProcess .. 32
4.3.3 PostPosFixProcess ... 32
4.3.3.1 PosDictionary... 32
4.3.4 CRFWFGTaggerProcess ... 33
4.3.5 MaxEntChunkFromPosProcess ... 33
4.3.6 CRFChunkFromWFGProcess .. 33
4.3.7 PosEntityFinderProcess .. 34
4.3.7.1 ThemeEntityFinder.. 34

4.4 Process Package – Client (dsto.nef.entity.process.output) 34
4.4.1 FXExportProcess .. 34
4.4.2 XMLOutputProcess ... 35

4.5 SwingUI Package (dsto.nef.entity.swingui) .. 35
4.5.1 EntityTemplate... 35
4.5.1.1 EntityTemplateFactory ... 35
4.5.2 EntityContentPanel ... 36
4.5.3 JEntitiesTable.. 36
4.5.4 JHighligtedTextArea ... 37
4.5.4.1 JHighlightedTextAreaController... 38
4.5.4.2 JTarget ... 38

5. EXTRAS SYSTEM ... 39
5.1 ServerProcessing Implementations... 39

5.1.1 LocalServer ... 39
5.1.2 GenericHandlerSession... 39

5.2 Process Configuration Framework .. 39
5.2.1 Reading From the File System ... 39
5.2.2 ProcessConfigurator.. 40
5.2.3 OperationGroup .. 40
5.2.4 OperationProcess... 41
5.2.5 OperationProcessParam ... 41

5.2.6 JProcessPanel.. 41
5.3 Batch Control ... 42

5.3.1 BatchController .. 42
5.3.2 JBatchDialog ... 43
5.3.3 JStringListDialog.. 43

6. REFERENCES... 45

APPENDIX A: STARTING NEFTOOL ... 46

APPENDIX B: PROGRAMMING GUIDELINES ... 47
B.1. General ... 47
B.2. Document Package... 47

B.2.1 NEFDocument.. 47
B.2.2 NEFContent .. 47

B.3. NEFProcess Package .. 47
B.3.1 NEFProcess ... 47

DSTO-TN-0789

1

1. Introduction

The text processing team from the Intelligence Analysis discipline has experimented with the
viability of using machine-learning models to find named entities1 within a text document.
The NEFTool has been designed as a testbed framework for experimenting with
implementations of different information extraction methodologies. The system has a
modular architecture with the separation of data, process and display as a major design goal.
As a result the system is extensible making it possible to modify its various components or
even add new components without affecting its existing functionality, thus providing a test
environment to support research in text processing.

This report provides an outline of the fundamental framework of the NEFTool and describes
an implementation of the system used to find named entities within a document. The report
focuses on the framework and implementation aspects of the system. Details of the
Information Extraction (IE) processes are not addressed.

The IE processes implemented include the following steps:

1. Sentence Breaking and Tokenisation:
The document is broken up into tokens (words) and sentences. The information
extraction process is targeted at tokens in the context of a sentence.

2. Tagging:
Tokens are analysed by a series of Machine-Learning models, with each trained model
assigning additional metadata to the tokens. Each stage of the machine learning
process relies on previously discovered tags2 (metadata) as well as tags on
surrounding tokens in the sentence.

3. Entity Discovery:
Named Entities are found in the document by an application of rules that search for a
particular sequence of tags indicating the presence of an entity.

Figure 1 System components of the NEFTool

1 Named Entities are textual references to items of interest, such as a Person, Organisation, Place,
Date/Time, etc.
2 An example of a tag for a token is its Part Of Speech (POS) such as a noun or verb.

Core System

Token System

Entity System

Extras System

DSTO-TN-0789

2

The current implementation of the NEFTool comprises four components shown in Figure 1.
Each component contributes to the information extraction pipeline described above. The
components of the system are:

• The Core System, described in Chapter 2, provides the base framework of the
NEFTool that the other systems extend.

• The Token System, described in Chapter 3, is responsible for the sentence breaking
and tokenisation of the document, as well as methods for associating metadata with
individual tokens and normalisation3 of tokens.

• The Entity System4, described in Chapter 4, is responsible for the Tagging and Entity
discovery tasks of the information extraction process by extending the tokenisation
framework provided by the Token System and adding machine-learning models.

• The Extras System, described Chapter 5, contains a collection of utility objects,
graphical widgets and various templates useful for adding additional features to the
system whilst not being a necessary part of it.

3 For example, converting quotes by Microsoft Word (“) into the standardised ASCII quote (``). This is
to ensure that all tokens use a charset that matches the charset used by the training data for the machine
learning models.
4 The Entity System currently comprises of Tagging and Entity Finding, this system will be divided
into separate components at a future date.

DSTO-TN-0789

3

2. Core System

The Core System is the most basic, yet most important component of the NEFTool. It contains
the many interfaces that constitute the entire framework of the system. The Core System
essentially makes the NEFTool an integrated development environment (IDE) that can have
features added to it incrementally to construct an entire system. Figure 2 shows the tiered
layered structure of the Core System of the NEFTool.

Figure 2 Common Packages in the NEFTool

The Core System has been split into five packages (layers) that contain components that are of
a tiered design. The tiered design is mirrored in the other systems of the NEFTool. The layers
are:

• The Document Package contains the source document and all the associated markup
of the document.

DSTO-TN-0789

4

• The Process Package is responsible for identifying information in the document and
adding the found information to the Document Package.

• The Server Processing Package is responsible for controlling the Process Package in
marking up a document. It also handles the process of getting a document from an
external source.

• The Event Package is responsible for separating logic from the user interface (UI). By
using a set of interfaces, UI components can be made without relying on other UI
components in the system.

• The SwingUI Package [1][2]is responsible for displaying the information from the
document layer, and for allowing a user to control the flow of information.

2.1 Core Layer (dsto.nef.core)

The Core Layer of the system is a holder for all variables that are used by the Core System
and other layers that reference the core system.

2.1.1 CoreEnvironment

Figure 3 dsto.nef.core.CoreEnvironment

CoreEnvironment is designed to hold singleton-like constants that the system commonly
uses. As these objects cannot be created by the get methods, they have a set method that is
triggered to raise an error in the event that a non-null variable will be replaced.

The CoreEnvironment also loads a Properties file; this allows for values to be saved so that
they can be loaded at startup. Any variable or setting that is important to only the Core
System should be added to the core environment. However if a variable is important only to a
particular System, that variable should be added to the Environment class directly associated
with that system.

DSTO-TN-0789

5

2.2 Document Package (dsto.nef.core.document)

Figure 4 dsto.core.nef.document Package

The Document Package contains basic collection-like objects used to hold the markup
information of a single text document.

Objects extended from the Document Package do not contain methods for determining
markup information. For example, in the case of sentence breaking, it would be possible to have
a single “SentenceContent” object capable of breaking a text document into sentences.
However, it is preferable to have a separate “setSentences” method and a “SentenceBreaking”
process, as it allows for different sentence breaking methods to be substituted.

2.2.1 NEFDocument

Figure 5 dsto.nef.core.document.NEFDocument

The NEFDocument class is a container for all the different NEFContent objects that are used for
the markup of a single document. As well as containing NEFContent Objects, NEFDocument
also contains all details of the original document used to create the NEFDocument.

2.2.1.1 getContent(Class<T extends NEFContent> contentClass): T
This method searches for a NEFContent object in the contentMap variable that has previously
been created by a getContent(Class) call. If no instance of contentClass is found, a new
instance of contentClass is created, stored and returned to the user.

Errors could be generated by using inheritance with NEFContent objects, so it is
recommended that NEFContent child classes are defined as final.

DSTO-TN-0789

6

2.2.2 NEFContent

Figure 6 dsto.nef.core.document.NEFContent

NEFContent is an abstract class used to represent a type of markup relevant to a text
document and is used to control the use of the getContent(Class) method of NEFDocument.
It follows that NEFContent objects should have a featureless Constructor in order for an
instance to be generated.

The NEFContent Class does not contain any methods. This is to enforce the requirements that
NEFDocument only contains objects that are specifically content-based and are associated with
a single document.

Another useful guideline is to make a NEFContent child class a final class. This would remove
any errors that NEFDocument.getContent(Class) may create due to polymorphism.

2.2.3 NEFPrimative

Figure 7 dsto.nef.core.document.NEFPrimative

NEFPrimative is the most basic form of information regarding a piece of markup. It is used to
simplify code and to provide a wrapper for the most basic information that a piece of markup
can hold. This should be used as the basis for all objects that represent a section of text.

2.3 Process Package (dsto.nef.core.process)

Figure 8 dsto.nef.core.process Package

DSTO-TN-0789

7

The Process Package is where all operations on a NEFDocument are performed. Processes can
range from breaking sentences to detecting whether “Bin Laden” has been mentioned in a text
that talks about terrorism.

Processes are solely responsible for:

a) Identifying information found in the source text document and NEFContent objects
that have been set by previous processes.

b) Saving the found information into the NEFContent objects it was designed to
populate.

Processes are designed to be single-task oriented with the idea of a "God-process" to be
avoided at all costs. This is to allow for one process to be swapped with another process that
does the same task, but uses a different method. This also has the additional benefit of making
debugging easier. For example, if a document has not been tokenized properly, it would be
correct to assume that the tokenizing process is not working properly.

The Process Package and the Document Package are the key packages of the system and are
not dependant on any other package (including the Server Processing Package).

2.3.1 NEFProcess

Figure 9 dsto.nef.core.document.NEFProcess

NEFProcess is a common interface that represents a single task that can be performed on a
document. Each Process is designed to only do one particular task in order to make it possible
to swap one similar process with another.

NEFProcess objects are designed to be “create once, use many”. Therefore no memory of
previous documents should be held within the object.

Not all NEFProcess objects are used to generate data in a NEFDocument. Some may be linked
to an output process, and are only used to output discovered data to an external source. These
NEFProcess objects are referred to as client processes.

2.3.2 ProcessFailedException

Figure 10 dsto.nef.core.document.ProcessFailedException

DSTO-TN-0789

8

A ProcessFailedException is thrown by a NEFProcess in the event that a particular error is
thrown by a method call if the process is in an un-expected state, or a required piece of
information in the NEFDocument has not been set by a previous process.

2.4 Server Processing Package (dsto.nef.core.serverprocessing)

Figure 11 dsto.nef.core.serverprocessing Package

Input sources for the NEFTool can range from a file of a specific data format, to an entire
database of documents. Regardless of the data type, all types of content need to be converted
into a NEFDocument. The Server Processing Package is designed to:

a) Allow different data formats to be added to the system, and
b) Manage a NEFProcess queue (if that is the desired conversion method).

The Server Processing Package was designed so that modifying a NEFServer should not
affect the operation of a NEFSession. This allows for quick modification to Server Processing
classes without having to make any fundamental changes to the classes that depend on it.

The most common method of converting a data source into a NEFDocument involves creating a
NEFSession class that can extract the document content and then pass it onto an object that
can convert it into a NEFDocument (usually a NEFServer).

DSTO-TN-0789

9

Figure 12 Requesting the next document in a GenericHandlerSession

Figure 12 shows an example of the processes involved in getting a NEFDocument from a
GenericHandler (which handles the content extraction). The GenereicHandlerSession does
the following actions:

1. Queries the GenericHandler for the document content.
2. Sends the content to a LocalServer instance of a NEFServer, which runs a process

queue over the content.
3. The NEFDocument is processes by several client NEFProcess objects within the

NEFSession before being returned to the user.

2.4.1 NEFServer

Figure 13 dsto.nef.core.serverprocessing.NEFServer

NEFServer is an abstract class used to convert a string (i.e. a document’s content) into a
NEFDocument object. This is generally managed by using a collection of NEFProcess objects as
a miniature production queue; however it is possible to use other methods of converting the
string.

An alternative design of the NEFServer would be to have it as a singleton that holds a
collection of NEFProcess objects however the NEFServer was made polymorphic in order to

DSTO-TN-0789

10

allow for swapping with different methods of document conversion. Some examples of a
NEFServer that could be created are:

1. A NEFServer that uses IE server on a network to convert a document, or
2. A NEFServer that interfaces with and extracts data from an Unstructured Information

Management Architecture (UIMA) [3] based framework.

All that would be required of such a NEFServer instance would be to send, receive and parse
the received information into a NEFDocument structure. The separation of document and
process was intended to allow for this type of experimentation.

A NEFServer object has no memory of previous document conversions, or any methods to
read an unknown file format. These methods are handled by a NEFSession object.

2.4.2 NEFSession

Figure 14 dsto.nef.core.serverprocessing.NEFSession

A NEFSession is a handler for a collection of documents that will be converted into
NEFDocument objects. A collection is typically a folder containing text documents in a
specified format. However, a collection can also consist of a NEFDocument object that has been
saved to the file system, or a single compressed file containing several documents. The
corpora sourced from the Message Understanding Conference5 (MUC) is an example of the latter.

A NEFSession object is responsible for extracting the text body of a document of a particular
format and then handing that information to an object designed to produce a NEFDocument
(for example, a NEFServer). It does not carry out the actual conversion into a NEFDocument.
This design encourages a single, manageable method for creating NEFDocument objects, and
simplifies the design of NEFSession objects.

It should be noted, however, that a NEFSession may contain a collection of client processes.
These processes are only included to export information to external sources (such as a
database) while batch processing, and do not make any changes to the NEFDocument itself.

5 A Conference initiated and financed by DARPA to encourage the development of new and better
methods of information extraction. [4]

DSTO-TN-0789

11

The use of NEFSession objects to read (and convert) any input source allows for a user
interface to be quickly modified to accept different file formats. All the programmer needs to
do is to create a new NEFSession object and call the methods to display the NEFSession.

2.4.3 ServerSession

Figure 15 dsto.nef.core.serverprocessing.ServerSession

ServerSession is an abstract NEFSession class for NEFSession objects that relies on a
NEFServer instance to generate NEFDocument objects. The NEFServer instance used can be
found at dsto.nef.core.CoreEnvironment.

The combined use of a NEFSession with a NEFServer allows several different file formats to
use the same process queue for information extraction. This is the recommended parent class
of nearly all NEFSession objects.

2.5 Event Package (dsto.nef.core.event)

Figure 16 dsto.nef.core.event Package

As many different methods are available for generating NEFDocument objects and controlling
the conversion process, linking display components to the system can become convoluted.
The Event Package is designed to provide a further abstraction layer from processing layers
and the user interface.

Display components are created which implement a specific set of interfaces based on their
desired use and operation. These components are notified of changes to the system by a
Controller object, usually a derivative of EventController.

DSTO-TN-0789

12

2.5.1 DocumentChangedListener

Figure 17 dsto.nef.core.event.DocumentChangedListener

The DocumentChangedListener interface is designed to allow for the separation of display
components from the underlying logic used to generate NEFDocument objects. Its main
purpose is to notify components that the current document in focus has been changed and to
update the display accordingly.

As a DocumentChanged event is usually the last thing caused by changing a NEFDocument, it is
possible to use a DocumentChangedListener to mark when a EventController (or other
underlying class) has been updated. Although a DocumentChangedListener ignores the
underlying document conversion process, components implementing the interface can be
aware of this process.

2.5.1.1 Possible use as a MDI system
An MDI (Multiple Document Interface) is a type of display layout that has one or more bank
of controls that are always visible, but modifies only the current window (or NEFDocument)
held in focus. Manipulating the behaviour of DocumentChangedListener objects could trick
the system into following this design pattern. By triggering a DocumentChanged event every
time a new window is brought into focus, the associated views and controls are updated to
focus on the document represented by the focus window. An example of an MDI-based
program is shown in Figure 18.

DSTO-TN-0789

13

Figure 18 Dia (http://live.gnome.org/Dia) uses a typical MDI Layout

Note: A static variable (or a private variable in the NEFWindowSystem singleton) representing
the current window (combined with DocumentChanged events) would be needed for updating
the controller target. This would possibly require components in the MDI system to know
about this variable, which would limit the reuse of these components.

2.5.1.2 documentChanged method
The method documentChanged(NEFDocument) notifies components to update their contents
to display a changed document. Figure 19 illustrates this process.

DSTO-TN-0789

14

Figure 19 Displaying a Document

2.5.1.3 clearDocument method
The method clearDocument() is used to reset all display components to their default no-
information state, and is mainly used in the event that a NEFSession object has been closed.
Figure 20 shows a structure similar to Figure 19 with clearDocument() being used instead of
documentChanged(NEFDocument). It is possible that documentChanged(NEFDocument) with
a null argument could be used instead.

Figure 20 Clearing a Document

2.5.2 DestructionListener

Figure 21 dsto.nef.core.event.DestructionListener

Some objects link themselves as listeners or connect to external resources that need to be
released when they are no longer used. Therefore, a form of notification is needed when a
particular view or window has been closed. While the NEFTool currently relies on JFrame
objects to report a closing window, it is not a dependable source of such information.

DSTO-TN-0789

15

Therefore the DestructionListener interface was created to allow for different systems to
still notify the necessary components of a closing window.

Components that have been called by a DestructionListener should sever all known links
to the outside world so that garbage collection can retrieve them as quickly and efficiently as
possible.

2.5.3 LoadingStateListener

Figure 22 dsto.nef.core.event.LoadingStateListener

Certain tasks carried out by the system may take considerable time, leaving the user
potentially confused as to what is happening. Therefore some form of feedback is needed
when a process intensive task is being carried out. Since there is separation between the GUI
and the conversion process, a form of abstract interface is needed to indicate this type of
change.

Due to the varying performance of the different operations performed, depending on task
complexity and document size, it is impossible to know the exact progress of a task. Therefore
only two methods are used, a start and a stop method. Several processes may be stacked and
be overlapping, so a form of counter is implemented to count the number of processes
currently running. Synchronized methods should be used to prevent multiple thread-based
errors while counting.

A component that implements LoadingStateListener does not need to be complex. A
simple progress bar at the bottom of a window, or an animated waiting icon, is usually
enough to signal that the machine is currently “thinking”.

DSTO-TN-0789

16

2.5.4 EventController

Figure 23 dsto.nef.core.event.EventController

While a NEFSession controls the process of generating a NEFDocument, a EventController
controls the NEFSession object and uses the Event Package to provide a connection to the UI.

The EventController notifies the UI by notifying DocumentChangedListener,
DestructionListener and LoadingStateListener objects and providing a separation from
the UI and NEFSession objects. This allows the UI to display NEFDocument objects and control
a NEFSession without requiring the UI to directly reference the NEFSession.

2.6 SwingUI Package (dsto.nef.core.swingui)

Figure 24 dsto.nef.core.swingui Package

The Swing UI Package utilizes Swing and the Event Package to create an easily customisable
GUI for displaying document objects. Adding GUI components to the NEFTool has been
designed to be as easy as possible.

Instead of creating an entire GUI for each change in the system, GUI development has been
split into creating individual panels and connecting them to an internal event system.
Although separating the components leads to a more complex system; the splitting of
components allows for smaller tightly focussed components that are simple to maintain and
modify. The only aspect of the system that requires effort is actually creating the initial
components themselves.

DSTO-TN-0789

17

2.6.1 WindowTemplate

Figure 25 dsto.nef.core.swingui.WindowTemplate

As the GUI is designed to be as adaptable as possible, forcing the user to use a single object is
very limiting, so the WindowTemplate interface was created as a template for what a
NEFWindow should display. All components are created in the WindowTemplate class and are
returned by various methods which define where the content is likely to be displayed.

2.6.2 WindowTemplateFactory

Figure 26 dsto.nef.core.swingui.WindowTemplateFactory

WindowTemplateFactory is a simple helper class for creating WindowTemplate objects. Its
main purpose is to provide NEFWindowSystem with a mechanism for creating
WindowTemplate objects without having to change the underlying code of the
NEFWindowSystem.

For each new WindowTemplate class created by a programmer, a matching
WindowTemplateFactory should be created, so that an instance of the WindowTemplate can
be made by a NEFWindowSession.

2.6.3 NEFWindowSystem

Figure 27 dsto.nef.core.swingui.NEFWindowSession

The NEFWindowSystem is an interface responsible for controlling the GUI delivered to the
user. In most forms, this involves creating and controlling multiple instances of NEFWindow,
and their containing window or frames.

The NEFSystem is intended to be a singleton, but, in order to accommodate polymorphism the
instance has been moved to CoreEnvironment. This is the location to which all references to
NEFWindowSystem should be made.

DSTO-TN-0789

18

By making changes to the NEFWindowSystem, the window organisation behaviour of the
NEFTool can be changed from a SDI (Single Document Interface) system to an MDI (Multiple
Document Interface), TDI (Tabbed Document Interface) or IDE (IDE-Style Interface) system
just by creating a new NEFWindowSystem class.

While the NEFWindowSystem was designed to control several NEFWindow instances, it is not
limited to only creating NEFWindow objects. Since all components are only interacting with an
EventController object, the NEFWindow technically is not needed at all.

2.6.4 SDIWindowSystem

Figure 28 dsto.nef.core.swingui.SDIWindowSystem

The SDIWindowSystem is an instance of NEFWindowSystem that uses a SDI (Single Document
Interface), which involves creating a new frame for each new NEFSession object it receives.

A typical frame is a single JFrame that holds a NEFWindow object. Each JFrame is separate
from other frames, with its own individual controls and menu bar. The SDIWindowSystem
keeps an account of all open JFrame objects. When all objects have been closed, the system is
shutdown.

All NEFWindow creating details are generated by a WindowTemplateFactory instance that is
defined in the constructor.

DSTO-TN-0789

19

2.6.4.1 Opening a NEFSession in a new NEFWindow

Figure 29 Creating a NEFWindow with an SDIWindowSystem

While the NEFWindowSystem does not need NEFWindow objects to run, it is still the preferred
way of displaying the results from a NEFDocument. The process of creating a NEFWindow
from an SDIWindowSystem seems complicated, but on a programming level it is simple, as it
has been divided into smaller objects that manage the work, while providing a simple
interface.

As Figure 29 shows, creating a NEFWindow involves multiple steps, but is easy to follow:

1. The SDIWindowSystem receives a request to open a NEFWindow.
2. An SDIEventController is created.
3. A WindowTemplate is created from the WindowTemplateFactory, which is controlled

by the NEFWindowSystem. The SDIEventController is used in the process.
4. A NEFWindow object is created with the WindowTemplate and the

SDIEventController.
5. The SDIEventController is set to display the desired NEFSession.
6. A JFrame is created to hold the NEFWindow and is displayed to the user.

2.6.4.2 SDIEventController
This is a custom EventController that links the behaviour of the EventController class
with an instance of the NEFWindowSystem.

DSTO-TN-0789

20

Normally, when a EventController receives a new NEFSession object, the old object is
replaced and the NEFWindow displays the new document. The SDIEventController is
different in that it sends the request to the NEFWindowSystem to open the new NEFSession
instead of the current EventController.

This behaviour can be controlled by setting the Boolean property defined by the
CoreEnvironment.MULTIPLE_WINDOWS_PROPERTY key to the desired value.
SetMultipleWindowsAction is a class which uses a JCheckMenuItem to change this setting.

2.6.4.3 WindowCloser Internal Class
The WindowCloser class is a simplistic “controller” for a JFrame that holds a NEFWindow. It
works by implementing two event listeners: a java.awt.WindowListener Interface to listen
for JFrame closing events, and a DocumentChangedListener used to update the title of the
JFrame.

As the NEFWindow is displayed as a JPanel that does not contain a JFrame, implementing a
WindowCloser is necessary to manage the closing of the JFrame. By not making the
NEFWindow a child of JFrame, or a JFrame controller, many different Swing-Based Interfaces
can be trialled, without needing to change the NEFWindow code.

2.6.5 NEFWindow

Figure 30 dsto.nef.core.swingui.NEFWindow

The NEFWindow is a panel that displays the content of a NEFDocument object and is the most
viewed component presented to the user. The NEFWindow really consists of a dummy
container for an EventController object, and a collection of components that implement the
DocumentChangedListener interface. Even the components themselves are not created by a
NEFWindow object, but a WindowTemplate instance. All the NEFWindow does is position the
components in a simple border layout. Figure 31 shows a NEFWindow using the default entity-
based components.

DSTO-TN-0789

21

Figure 31. A NEFWindow configured by an EntityTemplate

DSTO-TN-0789

22

3. Token System

3.1 TokenEnvironment

TokenEnvironment is simply a collection of static methods that allows for objects in the
document package to be converted into string objects and vice versa. It is mainly used for
simple debugging of the system.

3.2 Document Package (dsto.nef.entity.document)

Figure 32 the Token Document Package

The Token Content classes concern themselves with the tokenization information in a
document, and are represented as an object-oriented tree structure. It is the most commonly
used group of classes in the NEFTool, due to its ability to assign text tags to tokens, which are
useful for major operations on the document to support information extraction.

3.2.1 TokenContent

Figure 33 dsto.nef.token.TokenContent

DSTO-TN-0789

23

TokenContent is a child of NEFContent, and serves as a container for NEFSentence and
NEFToken objects. It represents an object-oriented tokenized markup of the finalised
document.

3.2.2 NEFSentence

Figure 34 dsto.nef.token.NEFSentence

NEFSentence is a collection of NEFTokens in sequence that represents a sentence. It is mainly
used to simplify sentence-based processing of documents.

3.2.3 NEFToken

Figure 35 dsto.nef.token.NEFToken

NEFToken represents a single token in a document. It contains a get and set Tag method for
setting attributes to the token. Currently in the NEFTool, three different tag sets are assigned
to tokens: part-of-speech (POS) tags, word function group (WFG) tags, and chunk information
tags.

Tags have been made abstract in order to allow existing tag sets to be extended and new tag
sets to be added without having to change code. The key for any tags used should be stored in
the corresponding system-environment object. That is, tags for entities are saved in
EntityEnvironment).

DSTO-TN-0789

24

3.3 Process Package (dsto.nef.token.process)

3.3.1 TextCleanerProcess

Figure 36 dsto.nef.token.cleaner.TextCleanerProcess

Some documents have additional whitespace at the start and end of each line. The
TextCleanerProcess trims leading and trailing spaces on each line of the document, making
it more legible. It should be noted that this process overrides all content classes within the
document. Therefore, if this process is to be run, it should be run first.

3.3.2 SentenceBreakerProcess

Figure 37 dsto.nef.token.sentencebreak.SetnenceBreakerProcess

Some processes evaluate unmarked documents one sentence at a time, requiring sentence
boundaries to be determined. SentenceBreakerProcess is a simple process for converting a
document into an array of NEFSentence objects using an algorithm to determine sentence
boundaries.

While it is an important part of the system, it can be removed from the Process Package in
future iterations if required. For instance, if an input source contains markedup token or
sentence boundaries the SentenceBreakerProcess will cause conflicts with the input source,
and will need to be removed from the processing pipeline.

3.3.3 PTBTokenizerProcess

Figure 38 dsto.nef.token.proces.tokenization.PTBTokenizerProcess

A document has to be broken up into tokens (words) in order for the individual tokens to be
analysed by subsequent text processing processes. The PTBTokenizerProcess uses a
modified Penn Treebank6 (PTB) [5] tokenizer to determine the boundaries of the tokens, and
uses this information to create NEFToken objects within a TokenContent object.

6 The Penn Treebank Project annotates naturally-occurring text for linguistic structure [5].

DSTO-TN-0789

25

3.4 SwingUI Package (dsto.nef.token.swingui)

3.4.1 JTokenTable

Figure 39 Example output from a JTokenTable

JTokenTable is a simple JPanel containing a JTable held by a JScrollPane, which displays
all tokens in a document and their associated markup. It relies on DocumentChangedListener
events to update its contents.

DSTO-TN-0789

26

4. Entity System

An early goal of the NEFTool was to discover and extract named entities occurring in
unstructured text documents. Named entities are mentions of items of interest such as names
of people, places and organisations. In the sentence, “Bob went to Adelaide”, the mentions
“Bob” and “Adelaide” are both examples of named entities. A range of techniques can be
applied to discover named entities in text. In order to support experimentation with different
IE techniques, the ability to swap processes was a critical design goal for the system.

Some IE methods used by the NEFTool involve assigning tags to tokens. Therefore the Entity
System is highly dependent on the Token System. Tagging processes of the Entity System
are interchangeable as long as they use the same tags when saving to NEFToken objects.

4.1 Entity Environment (dsto.nef.entity)

Figure 40 dsto.nef.entity Package

As the name implies, the Entity Environment contains all the constants that are necessary for
the other objects in the Entity System. Once again, this package is used so that polymorphism
can be implemented in the system with minimal code modification, a task which is difficult to
accomplish with a straight singleton.

DSTO-TN-0789

27

4.1.1 EntityEnvironment

Figure 41 dsto.nef.entity.EntityEnvironment

Similar to the TokenEnvironment, the EntityEnvironment class is a holder for variables and
constants that are used by classes in the Entity System.

As the DictionaryLoader and ThemeLoader are important to the system, both are called to
create the necessary PosDictionary object and list of NEFTheme objects necessary for most
server processes in the Entity Package. However both variables can be overridden by calling
set methods.

4.1.2 DictionaryLoader

Figure 42 dsto.nef.entity.DictionaryLoader

DictionaryLoader is responsible for creating the CoreEnvironment.masterDictionary
object and loading dictionary files from the local file system.

The DictionaryLoaderXMLConstants class is the container for all XML configuration file
constants used by the DictionaryLoader.

4.1.3 ThemeLoader

Figure 43 dsto.nef.entity.ThemeLoader

ThemeLoader is responsible for creating instances of PosThemeEntityFinder from an XML-
based configuration file. All “Theme” variables found in the theme configuration files are
saved into a collection within the PosDictionary. As this is a required variable, the
Dictionary Configuration file should be loaded before ThemeLoader (usually via
DictionaryLoader).

DSTO-TN-0789

28

In a similar naming scheme to DictionaryLoader, the XML configuration file constants are
found in the ThemeLoaderXMLConstants class.

4.2 Document Package (dsto.nef.entity.document)

Figure 44 dsto.nef.entity.document Package

The essential purpose of the NEFTool is to find referemces to mentions in a document. The
Entity Content Classes are a set of Objects that are used to store information based around
mentions.

In keeping with the document-process model, EntityContent objects are unable to find
mentions and rely on external NEFProcess objects to find entities.

4.2.1 EntityContent

Figure 45 dsto.nef.entity.document.EntityContent

EntityContent is the container for all mentions found within a document. It is a child of
NEFContent, and is meant to be generated by a call to the getContent(Class) method found
in the NEFDocument.

DSTO-TN-0789

29

The getEntities() method returns NEFEntity objects in the order they were put into the
system. The sort method should be used to return a sorted set of NEFEntity objects.

4.2.2 NEFEntity

Figure 46 dsto.nef.entity.document.NEFEntity

NEFEntity is a container for tokens that belong to a particular mention found in a
NEFDocument. The NEFEntity only contains the basic details of where the mention was
referenced, not the details. However there is a “description” variable which returns a
NEFTheme object, which is shared by NEFEntity objects that are of the same type.

4.2.3 NEFTheme

Figure 47 dsto.nef.entity.document.NEFTheme

NEFTheme is a common description of a particular type of mention (such as a name or person).

NEFTheme originally contained methods to determine mentions within a series of tokens.
However, in keeping with the principle of separating NEFDocument objects and NEFProcess
objects, this was removed and put into the PosThemeEntityFinder
(dsto.nef.entity.process) class.

DSTO-TN-0789

30

4.3 Process Package – Server (dsto.nef.entity.process)

Figure 48 dsto.nef.entity Package

DSTO-TN-0789

31

The Entity Process Package, shown in Figure 48, contains all the processes needed to extract
references of mentions from a NEFDocument. While it is currently possible to use several
different methods for extracting mentions, the commonly used method relies on a series of
steps:

1. Determine POS tags.
2. Determine WFG tags.
3. Determine chunk information regions (marked as using the IOB7 tagsets)
4. Use the resulting information to find entities following defined patterns.

Each process has a number of NEFProcess objects that can carry them out, allowing for
experimentation with different machine learning algorithms.

4.3.1 AbstractCRFProcess

Figure 49 dsto.nef.core.process.crf.AbstractCRFProcess

As one of two machine learning approaches employed by the NEFTool, Conditional Random
Fields8 (CRF) is a probabilistically-based approach to assigning labels to sequences of tokens,
based on the learning of associations between tokens and labels in a training model. The
'CRF++' toolkit [6] is an implementation of CRF used by NEFTool. While CRF++ is used for
several different processes, the code employed in each process is very similar. So
AbstractCRFProcess was created to simplify code and allow for rapid development of CRF -
based processes.

Two methods need to be implemented: a method to turn a NEFToken into an array of String
Objects, and a second method to add the additional information (also in a String array) back
into the NEFToken object.

The size of the array, and the tags set to it, depends on the CRF model file used.

7 Tags with a prefix used to markup a sequence in the format: I = Inside, O = Outside, B = Begin.
8 CRF can be used for the labeling or parsing of sequential data, such as natural language text [7].

DSTO-TN-0789

32

4.3.2 MaxEntPosTaggerProcess

Figure 50 dsto.nef.entity.process.pos.MaxEntPosTaggerProcess

The 'Maximum Entropy9' (MaxEnt) method is an alternative machine learning-model used to
assign labels to tokens. MaxEntPosTaggerProcess labels tokens with POS tags using a
MaxEnt model. The resulting POS tags are saved to the corresponding NEFToken objects in the
TokenContent class.

4.3.3 PostPosFixProcess

Figure 51 dsto.nef.entity.process.pos.PostPosFixProcess

The PostPosFixProcess does a look-up of a PosDictionary containing user-defined Tags,
and supplements NEFToken objects with “dictionary tags” where appropriate.

MaxEntPosTaggerProcess has also been known to markup a few tokens incorrectly. For
instance, the capitalisation of letters and numerals has been known to cause inaccuracies in
the POS tagger. These erroneous POS Tags are replaced with the desired value by the
PostPosFixProcess.

4.3.3.1 PosDictionary

Figure 52 dsto.nef.entity.process.pos.PosDictionary

POSDictionary is a collection of POS Tags that are loaded via a text file while NEFTool is
being started. It is used by PostPosFixProcess to determine additional dictionary tags that
are relevant to a NEFToken. Dictionary files are lists with each word on a new line.

9 “…maximum entropy is a method for analyzing the available information in order to determine the
most probable probability distribution...” [8].

DSTO-TN-0789

33

4.3.4 CRFWFGTaggerProcess

Figure 53 dsto.nef.entity.process.wfg.CRFWFGTaggerProcess

CRFWFGTaggerProcess finds the word WFG tags using the CRF toolkit, assigning WFG tags
on the basis of learnt associations between WFG tags, POS tags and tokens. It is a child class of
AbstractCRFProcess in order to reduce coding complexity.

4.3.5 MaxEntChunkFromPosProcess

Figure 54 dsto.nef.entity.process.chunk.MaxEntChunkFromPosProcess

MaxEntChunkFromPosProcess uses a MaxEnt model to determine the chunk10 information in
a document. It requires token and POS tag information to generate the tag.

4.3.6 CRFChunkFromWFGProcess

Figure 55 dsto.nef.process.chunk.CRFChunkFromWFGProcess

CRFChunkFromWFGProcess is an AbstractCRFProcess that determines the chunk information
in a document using the CRF++ toolkit, based on prior learning of POS and WFG tag
information to generate the tag.

10 Chunking is the process of segmenting non-overlapping tokens (words) into phrases including noun,
verb or preposition phrases, for example the phrase “We saw the yellow dog.” can be broken up as
[We/B-NP] [saw/B-VP] [the/B-NP yellow/I-NP dog/I-NP][./O]. The individual phrases found by the
chunking process are called chunks [9].

DSTO-TN-0789

34

4.3.7 PosEntityFinderProcess

Figure 56 dsto.nef.entity.process.PosEntityFinderProcess

PosEntityFinderProcess finds references to mentions within a document, by using an array
of ThemedEntityFinder objects.

Conflicts caused by the different outputs of the ThemeEntityFinder objects are resolved and
duplicate entities are removed with the theme of highest priority kept.

4.3.7.1 ThemeEntityFinder

Figure 57 dsto.nef.entity.process.PosThemeEntityFinder

ThemeEntityFinder was originally part of NEFTheme (used by EntityContent) but was
removed to encourage the separation between document and processes. It finds entities by
using a combination of dictionary lookup values and patterns of POS and dictionary tags
defined in the theme configuration files. It currently only uses POS and dictionary tags to find
information, but it will eventually be modified to also use WFG and Chunk tags.

4.4 Process Package – Client (dsto.nef.entity.process.output)

The client processes in the Entity System are responsible for outputting EntityContent
objects to an external source while batch processing.

4.4.1 FXExportProcess

Figure 58 dsto.nef.entity.process.output.FXExportProcess

The NEFTool is used to output entity information either to a group of text files which are
determined by lists of words that pertain to a theme, or an XML file.

Output is essentially the text component of several NEFEntity objects (with the same theme),
placed in a file named [themeName].fx.

DSTO-TN-0789

35

4.4.2 XMLOutputProcess

Figure 59 dsto.nef.entity.process.outpu.XMLOutputProcess

XMLExportProcess is a more detailed alternative to the FXExportProcess. Output is
generated using NEFXMLWriter to generate the output using the path:
./XMLOut/[filename].xml.

The output is intended to allow for future programs to reconstruct the broken-down
document. The process is controlled by XMLExportProcess class which uses XMLConstants
for all XMLTag labels.

4.5 SwingUI Package (dsto.nef.entity.swingui)

4.5.1 EntityTemplate

EntityTemplate is a simple WindowTemplate for displaying mention information in a
document. EntityTemplate objects are intended to be created by EntityTemplateFactory
objects, which is further responsible for creating EntityContentPanel objects to be used as
the main window.

Nearly all JMenuBar and JToolbar controls used are defined in the Extras System. This might
be controlled by a type of factory in future revisions.

4.5.1.1 EntityTemplateFactory
EntityTemplateFactory acts like any other WindowTemplateFactory in providing an
interface that allows a NEFWindowSession object to create instances of NEFWindow that use
EntityTemplate as a layout guide.

DSTO-TN-0789

36

4.5.2 EntityContentPanel

Figure 60 a EntityContentPanel without any document Loaded

EntityContent panel is the main component of an EntityTemplate-based NEFWindow. It
consists of a:

• JHighlightedTextArea,
• JThemeChooserPanel,
• JEntitesTable and a
• JTokenTable.

All components are displayed on a single panel divided by a JSplitPane. The
JHighlightedText area is set to load documents that are dragged onto its content.

4.5.3 JEntitiesTable

A Simple JPanel, consisting of a JTable and a JScrollPane, which displays all tokens in the
document and their associated markup. Table Columns are:

DSTO-TN-0789

37

• Type of Entity,
• Start Position,
• End Position,
• Text in Entity,
• Number of Tokens.

All information is received by implementing the DocumentChangeListener and connecting
the JEntitiesPanel to a EventController.

Figure 61 Example output from a JEntitiesPanel

4.5.4 JHighligtedTextArea

Figure 62 A JHighligtedTextArea showing the Entity Content of a NEFDocument.

JHighlightedTextArea is a JTextArea with added methods to simplify the process of
highlighting words with different colours.

DSTO-TN-0789

38

4.5.4.1 JHighlightedTextAreaController
HighlightedTextAreaController manages the content of a JHighlightedTextArea
component. It provides the logic to convert a NEFDocument objects into a form that
HighlightedTextArea can render. This requires that the NEFDocument contains a defined
EntityContent “Content” object with entities that have been found.

4.5.4.2 JTarget
This is a drop target listener for any Swing component. An ActionListener can be attached
to it for it to report any “drop” Events. It is mainly used for handling open text document
commands, caused by a user dropping a text file onto the main display.

DSTO-TN-0789

39

5. Extras System

5.1 ServerProcessing Implementations

5.1.1 LocalServer

LocalServer is a basic implementation of a NEFServer that runs locally within the current
runtime of the system. This is the most basic implementation possible of a NEFServer.

5.1.2 GenericHandlerSession

GenericHandlerSession is a NEFSession that acts as a wrapper for a GenericHandler. The
original version of the NEFTool used an interface called a GenericHandler to read the
contents of files of different formats and is reusable in different systems.

5.2 Process Configuration Framework

This is essentially similar to the Process Package described in previous sections. Processes are
controllers for the different operations that can be performed on a text document in order to
determine the markup.

The development of future processes may lead to different processes performing the same
task. As the NEFTool is designed to test different processes, it would be useful to “hot-swap”
different processes and repeat the previously performed operation without restarting the
system.

The Process Configuration Framework provides a framework for swapping processes and
also for allowing processes to be added to the system without modifying the source code.

5.2.1 Reading From the File System

The ProcessConfiguration can be saved as an XML file which can be read by the
ProcessConfigXMLReader (dsto.nef.extras.processconfig.io) object. The XML file is in
the temporary format:

<ROOT_ELEMENT>
 <GROUP_ELEMENT GROUP_LABEL=”label” GROUP_OPTIONAL=”true|false”>
 <PROCESS_ELEMENT PROCESS_CLASS=”Class” PROCESS_LABEL=”label”>

<PARAM_ELEMENT PARAM_TYPE=”Converter Type”
 PARAM_VALUE=”Converter Value” />
<!— Other Parameters -->

 </PROCESS_ELEMENT>
<!— Other Candidate Processes -->

 </GROUP_ELEMENT>
<!—Other Groups-->

</ROOT_ELEMENT>

DSTO-TN-0789

40

Since converting a PARAM element’s PARAM_VALUE to the desired object is a complex
process, it needs to be changed; the element’s name should be the object type NOT a PARAM
label. This was due to a relative inexperience with XML at the time of writing and will be
amended at a later date.

5.2.2 ProcessConfigurator

Figure 63 dsto.nef.extras.processconfig.ProcessConfigurator

ProcessConfigurator is an object-oriented representation of the process configuration of a
current system. It is essentially a collection of OperationGroup objects, but it has the extra
functionality of being able to generate a queue of NEFProcess objects which can be used by
the system.

ProcessConfigurator contains two static instances: one for client processes, and one for
server processes. However, no methods are in place to set these preferences to a NEFServer or
NEFSession instance.

5.2.3 OperationGroup

Figure 64 dsto.nef.extras.processconfig.OperationGroup

OperationGroup is a collection of OperationProcess “candidates” that can be converted into
NEFProcess objects. It allows a OperationProcess to be “selected” as the generator of a
single NEFProcess instance.

DSTO-TN-0789

41

5.2.4 OperationProcess

Figure 65 dsto.nef.extras.processconfig.OperationProcess

This is used for creating “customizable” instances of NEFProcess. OperationProcess
contains a list of parameters and the basic details of a process in an OperationGroup.

For a NEFProcess object to be created, it must have a static method with the same name as the
STATIC_CONFIGURE_METHOD variable with a single Map<String,Object> argument. This
method has been implemented on most NEFProcess objects used in the NEFTool.

5.2.5 OperationProcessParam

Figure 66 dsto.nef.extras.processconfig.OperationProcessParam

Representing a parameter of a NEFProcess, OperationProcessParam is used to set a value
for a newly created NEFProcess object before it is returned by an OperationProcess object.

5.2.6 JProcessPanel

JProcessPanel is a JPanel used to “configure” a ProcessConfiguration object.

OperationGroup Objects are displayed as cells containing the following components:

• A JLabel: A display label of the OperationGroup.label variable.
• A JCheckBox: If the OperationGroup is optional, changing the value selects

whether the OperationGroup is used or not. If the OperationGroup is not
optional, than the JCheckBox is selected and greyed out.

• A JComboBox: If the OperationGroup has several candiate processes, the
drop-down menu allows the user to select the desired candidate to use.

DSTO-TN-0789

42

Figure 67 A JProcessPanel showing a Server Configuration

All changes made to the JProcessPanel are immediately set to the ProcessConfiguration
object defined in the constructor. It implements the DocumentChangedListener and the
DestructionListener, which should be linked to an EventController on creation.

5.3 Batch Control

5.3.1 BatchController

BatchController is a simple controller for managing a BatchProcess on its own
independent thread. It uses ActionListener and PropertyChangeListener events in order
to update “display” objects of changes in the process queue. A BatchController needs to be
created for each batch process as it isn’t "thread-safe".

The ActionListener Framework is used for listening to changes made to the batch process.

DSTO-TN-0789

43

The processes used are:

BATCH_END Signals that a batch process has completed its list of tasks.
BATCH_START Signals that a batch process has started
BATCH_STOP Signals that a batch process was stopped by the user.

PropertyChangeListeners are used to notify any display components of a change in
sequence. The string PropertyValues are:

BATCH_INDEX_VAL An integer that marks current position in the

list of document queue that the
BatchController is processing (i.e. 2/50).

BATCH_TOTAL_VAL An integer value of the number of documents
the BatchController is processing (i.e. 20)

5.3.2 JBatchDialog

This is a simple JDialog that pairs with a BatchController to display the progress of a batch
process. The dialog is simple, containing the following components:

JLabel Displays the current progress of the batch process.
JProgressBar A progress bar that fills during the batch process.
JButton A button to stop the currently running process.

If several documents cause a ProcessFailedException to be raised, a JStringListDialog is
displayed listing the documents that have failed at the end of the process.

Figure 68 JBatch Dialog processing a Queue

5.3.3 JStringListDialog

JStringListDialog provides a simple list of all of strings in a JTable. It is mainly used to
display the failed documents in a batch process.

DSTO-TN-0789

44

Figure 69 JFailedDocumentDialog presenting a list of failed documents

DSTO-TN-0789

45

6. References

[1] Swing widget toolkit for Java, http://en.wikipedia.org/wiki/Swing_%28Java%29:.

[2] Swing widget toolkit for Java,

 http://java.sun.com/javase/6/docs/technotes/guides/swing/index.html.

[3] Unstructured Information Management Architecture,

 http://incubator.apache.org/uima/.

[4] Grishman, R. & Sundheim, B, “Message Understanding Conference – 6: A Brief
History”, http://acl.ldc.upenn.edu/C/C96/C96-1079.pdf.

[5] The Penn Treebank Project, http://www.cis.upenn.edu/~treebank/.

[6] The CRF++ Toolkit, http://crfpp.sourceforge.net/.

[7] Conditional Random Field,

 http://en.wikipedia.org/wiki/Conditional_random_field.

[8] Maximum Entropy, http://en.wikipedia.org/wiki/Maximum_Entropy.

[9] Bird, S., Klien, E. & Loper, E. “Introduction to Natural Language Processing”,
http://nltk.org/doc/en/chunk.html.

DSTO-TN-0789

46

Appendix A: Starting NEFTool

A static main method for NEFTool can be found at dsto.nef.StartProcessConfiguration.
It loads a dynamically loaded process configuration which is controlled by a
SDIWindowSystem with an EntityTemplateFactory.

The following calls are needed to start the system:

ProcessConfigurator serverConfiguration, clientConfiguration;

/* Display Warning Message - Insecure System */
Toolkit.getDefaultToolkit().beep();
String message = "WARNING: XMLExportProcess (A Client Process) outputs
documents to ./XMLOut/\n"
 + "!!! NOT RECCOMENDED FOR >= RESTRICTED DOCUMENTS !!!";
JOptionPane.showMessageDialog(null,message,"NEFTool",

JOptionPane.WARNING_MESSAGE);

/* Setup basic logger setttings */
BasicConfigurator.configure();
Logger.getRootLogger().setLevel(Level.WARN);
Logger.getLogger(EventController.class).setLevel(Level.DEBUG);
Logger.getLogger(DefaultSessionControllerModel.class)

.setLevel(Level.DEBUG);

/* Setup the Process Environment */
CoreEnvironment coreEnvironment = CoreEnvironment.start();

/* Load the Server Configuration */
File serverConfigFile = new
File(CoreEnvironment.SUPPORT_DIRECTORY,"process_server.cfg.xml");
serverConfiguration = ProcessConfigXMLReader.getConfig(serverConfigFile);
ProcessConfigurator.setServerConfigurator(serverConfiguration);

/* Load the Client Configuration */
File clientConfigFile = new File(CoreEnvironment.SUPPORT_DIRECTORY,
 "process_client.cfg.xml");
clientConfiguration = ProcessConfigXMLReader.getConfig(clientConfigFile);
ProcessConfigurator.setClientConfigurator(clientConfiguration);

/* Create the Server */
LocalServer server = new LocalServer();
server.setProcesses(serverConfiguration.generateQueue());
coreEnvironment.setServer(server);

/* Start the Window System */
EntityTemplateFactory templateFactory = new EntityTemplateFactory();
SDIWindowSystem system = new SDIWindowSystem(templateFactory);
CoreEnvironment.getInstance().setWindowSystem(system);

system.newWindow();

DSTO-TN-0789

47

Appendix B: Programming Guidelines

B.1. General

• Exceptions are extremely useful when used properly; errors should not be ignored,
because they may cause inaccuracies in the final outcome. Exceptions should always
be reported in such a way that a developer might find useful.

• Code either works properly or not at all: there are few things more frustrating than
trying to discover a problem that was concealed several methods' calls previously.

• Log4J (http://logging.apache.org/log4j/) is extremely useful for reporting
abnormal behaviour of the system as well as for tracing standard operation. It should
be used where possible.

B.2. Document Package

B.2.1 NEFDocument

• This class should really be fine as it is; do not add extra information to it that could be
handled by a NEFContent Object.

B.2.2 NEFContent

• NEFContent objects only contain information; it should never be responsible for
generating/parsing this information. However, it should be able to validate the
information being sent to it.

• It is recommended that NEFContent objects are declared as final. This stops potential
problems that could be caused by inheritance and the
NEFDocument.getContent(Class) method.

B.3. NEFProcess Package

B.3.1 NEFProcess

• Ensure NEFProcess objects do only one task. This allows for NEFProcess objects to be
swapped with other NEFProcess objects that do the same task.

• A NEFProcess object must not have a “memory” of previous documents. It should be
possible to make all methods static (not variables) in order to test this.

• NEFProcess objects should be made "thread-safe". Adding a synchronized tag to the
process(NEFDocument) method helps in this regard.

• Any possible errors should be wrapped in a ProcessFailedException and thrown
back to the user. The NEFWindow GUI has dialogs for displaying
ProcessFailedExceptions to the user.

• A “public static NEFProcess configure(Map<String, Object> configMap)”
should be provided. This allows for the Process Configuration Packages in “NEF
Extended” to dynamically generate NEFProcess objects, which allows the user
experiment with different NEFProcess objects during runtime.

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

NEFTool: System Design

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Benjamin Morrall

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

6a. DSTO NUMBER
DSTO-TN-0789

6b. AR NUMBER
AR- 014-048

6c. TYPE OF REPORT
Technical Note

7. DOCUMENT DATE
November 2007

8. FILE NUMBER
2007/1138993/1

9. TASK NUMBER
CCT07/201

10. TASK SPONSOR
EXEC DIR CTSTC

11. NO. OF PAGES
47

12. NO. OF REFERENCES
8

13. URL on the World Wide Web

http://www.dsto.defence.gov.au/corporate/reports/DSTO-
TN-0789.pdf

14. RELEASE AUTHORITY

Chief, Command, Control, Communications and Intelligence
Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.htm

Information Extraction, Machine Learning, Framework.

19. ABSTRACT
The text processing team from the Intelligence Analysis discipline has experimented with the viability of using machine-learning models to
automatically tag English words with syntax and functional labels within a text document. The NEFTool was developed to assist with testing
different machine-learning models. The system has a modular architecture, and was designed to be extensible, allowing support for rapid
prototyping and for new functionality to be added as required to support research in text processing.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	1. Introduction
	2. Core System
	2.1 Core Layer (dsto.nef.core)
	2.2 Document Package (dsto.nef.core.document)
	2.3 Process Package (dsto.nef.core.process)
	2.4 Server Processing Package (dsto.nef.core.serverprocessing)
	2.5 Event Package (dsto.nef.core.event)
	2.6 SwingUI Package (dsto.nef.core.swingui)

	3. Token System
	3.1 TokenEnvironment
	3.2 Document Package (dsto.nef.entity.document)
	3.3 Process Package (dsto.nef.token.process)
	3.4 SwingUI Package (dsto.nef.token.swingui)

	4. Entity System
	4.1 Entity Environment (dsto.nef.entity)
	4.2 Document Package (dsto.nef.entity.document)
	4.3 Process Package – Server (dsto.nef.entity.process)
	4.4 Process Package – Client (dsto.nef.entity.process.output)
	4.5 SwingUI Package (dsto.nef.entity.swingui)

	5. Extras System
	5.1 ServerProcessing Implementations
	5.2 Process Configuration Framework
	5.3 Batch Control

	6. References
	Executive Summary
	Appendix A: Starting NEFTool
	Appendix B: Programming Guidelines
	B.1. General
	B.2. Document Package
	B.3. NEFProcess Package

	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

